PERSONALIZING
THE FUTURE OF ORTHOPEDICS.

Zimmer Biomet’s Personalized Solutions Team is focused on creating a comprehensive, technology-based portfolio aimed at providing better patient outcomes without sacrificing customer economics.

Within our current range of products and services, we offer:

- Patient Specific Guides (PSI*, ZPSI (internal), and Signature™* Personalized Guides)
- iASSIST® Knee System
- Optical Navigation System
- eLIBRA® Dynamic Balancing System
- VERASENSE™ Sensor-Assisted TKA

* A collaborative partnership with Materialise, N.V.
Zimmer Biomet’s Personalized Guide Systems provide interactive, 3D preoperative planning software and intraoperative guides that assist surgeons in the precise positioning of knee implants.

- Patient imaging is used to generate a 3D virtual model for an unobstructed view of critical anatomic landmarks.
- Interactive, 3D virtual surgeon planning enhances visualization of patient anatomy and implant position.
- Virtual planning attributes are embodied in patient specific, 3D printed guides.
- The use of interactive planning and patient specific guides streamline the surgical workflow.
- Technology is a significant driver for patients to undergo total joint replacement surgery.¹
- Studies have demonstrated better accuracy and clinical outcomes through the use of Patient Specific Guides.²⁻⁶
The iASSIST System provides a compact, electronic guidance system designed to help surgeons align and validate bony resections in real-time within the surgical field.

- Works with traditional instruments for minimal workflow disruption.
- Intraoperative validation of resections in the surgical field without the use of additional imaging equipment.
- Guidance technologies have shown a 25% lower revision rate due to loosening or lysis at 8 years.\(^7\)
- Radiological outcomes have shown that the iASSIST System’s validation feature increases precision and accuracy compared to conventional instruments.\(^8\)
- iASSIST provides 88% good or excellent patient satisfaction.\(^9\)
OPTICAL GUIDANCE

VISIBLY ACCURATE

The Optical Guidance System provides enhanced tracking visibility for intraoperative positioning and validation of resections and assessment of limb alignment.

• Due to the placement of reflective discs in an angular arrangement on the NavitracKER® Reference Marker Device, the range of visibility compared to spheres increases from 127 degrees to 135 degrees.

• Reflective discs offer better visibility compared to spheres that adapt to various intraoperative constraints (size, patient draping, anesthesia equipment, etc.).

• Robust functionality offering can accurately accommodate everything from straightforward to complex cases.

• Full set of customizable functionalities to create an expedited, surgeon-specific workflow.

• Guidance technologies have shown a 25% lower revision rate due to loosening or lysis at 8 years.7
eLIBRA Dynamic Knee Balancing System® (DKBS)

OBJECTIVELY BALANCED

eLIBRA Dynamic Knee Balancing System electronically measures soft tissue force and provides objective, real-time feedback for personalized femoral component rotation.

- Quantifiable evaluation of flexion gap balance with the patella reduced prior to committing to femoral component rotation.
- Dynamic instruments with objective feedback eliminate the subjectivity of gap balancing with traditional instruments.
VERASENSE™ Sensor-Assisted TKA is a disposable sensor that wirelessly transmits quantitative data from a patient’s knee to an intraoperative monitor, enabling a surgeon to customize implant positioning and achieve proper soft tissue balance in real-time.

- A single use disposable sensor replacement of standard TKA poly trial
- Helps establish proper TKA: Soft tissue balance and implant position
- Intelligent instrument: Embedded with proprietary micro-processor
- Sensors and wireless communication technology
- Supports evidence-based outcomes, joint registry objectives and physician quality reporting system (PQRS) initiatives
References

4. Schotanus, M., Boonen, B., Kort, N. Patient specific guides for total knee arthroplasty are ready for primetime; World J Orthop 2016 January 18; 7(1): 61-68 ISSN 2218-5836

7. de Steiger R. The Outcome of Computer Navigation for Primary Knee Replacement. AOA. 2013.

9. Goh et al., Accelerometer-Based Navigation is as Accurate as Optical Computer Navigation in Restoring the Joint Line and Mechanical Axis After Total Knee Arthroplasty, JOA 31 (2016) 92-97